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Abstract. An excitonic method appropriate to study conjugated oligomers and polymers is
described and its applicability tested on the ground and first excited states oftrans-polyacetylene,
taken as a model. From the Pariser–Parr–Pople Hamiltonian, we derive an effective Hamiltonian
based on a local description of the polymer in terms of monomers; the relevant electronic
configurations are built on a small number of pertinent local excitations. The intuitive and
simple microscopic physical picture given by our model supplements recent results, such as the
Rice and Garstein ones. Depending on the parameters, the linear absorption appears dominated
by an intense excitonic peak.

1. Introduction

π electrons confer to conjugated polymers attractive electronic properties which are
associated with the traditional elastic ones of saturated polymers. For instance, the optical
absorption thresholds of these compounds are in the visible or near-UV range. Some of
them possess a strong and fast non-linear response. Last, some compounds present an
insulator–metal transition under doping. During the past twenty years it became clear that
the electron–phonon and the electron–electron interactions are both important to correctly
describe the lowest electronic excitations ofπ electrons [1]. Moreover the long-range part
of the electron–electron interaction term has somehow to be considered, in order to properly
describe, for instance, the excitonic states clearly observed in polydiacetylenes (PDA). The
simplest and most studied model Hamiltonian which includes these specific interaction terms
is the so-called Pariser–Parr–Pople Hamiltonian [2]

HPPP =
∑
n,σ

tn,n+1(a
+
nσ an+1,σ + a+n+1,σ anσ )

+1

2

∑
n,m,σ,σ ′

Vn,m

(
a+nσ anσ −

1

2

)(
a+mσ ′amσ ′ −

1

2

)
. (1)

In this expressiona+nσ (anσ ) are the creation (annihilation) operators of an electron in site
n with spin σ . The first term describes the kinetic energy of theπ electrons and their
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interactions with the atomic cores, expressed using first-neighbour hopping integrals. The
second term is the Coulomb repulsion betweenπ electrons localized on the sitesn andm.
Various parametrizations of the Coulomb term exist in the literature [1]. Here in order to
compare with the results of Yuet al, we adopt their parametrization [3]

Vnm = U if n = m andVnm = V

|n−m| if n 6= m. (2)

The electron–phonon interaction is treated semi-classically by introducing a linear
dependence over the bond lengths in the hopping integrals. In the simplest case,
polyacetylene (PA), a usually adopted parametrization was introduced by Su, Schrieffer
and Heeger (SSH) [4, 5]

tn,n+1 = t0+ α(un − un+1) (3)

whereα is the electron–phonon coupling constant andun is the displacement co-ordinate
of the nucleusn along the molecular axis. The bond alternation observed in PA is easily
reproduced by settingun = (−1)nu, yielding a pair of integralsβd and βs , the hopping
integrals associated with the double (1.35Å) and the single bonds (1.45̊A) respectively.

HPPP is invariant under electron–hole transformation. Consequently, the eigenstates
of this Hamiltonian can be classified following the electron–hole symmetry classes, i.e. the
so-called (+) and (−) classes. This symmetry allows us to simplify the calculations.

1.1. Overview of the methods employed for the study ofHPPP

With the parameter values relevant for conjugated polymers, the Coulomb terms are
approximately of the same order of magnitude as the kinetic ones. In this case, the study
of the PPP Hamiltonian becomes a very difficult problem. Only the shortest polyenes
(with the number of double bondsN , N 6 8) can be properly studied by the usual
quantum chemistry methods [2]. For the thermodynamic limit additional, and often drastic,
approximations must be applied. The mean-field theories [4, 5] gave a simple physical
picture of conjugated polymers but, since electronic correlations are discarded, the results
are always quantitatively incorrect and even, in some cases, qualitatively wrong [1]. A direct
refinement of these methods are the excitonic ones, introduced for instance by Abeet al
[6]; using the valence and conduction bands obtained by mean-field theory, they perform
a configuration interaction including every monoexcited Slater determinant. For a given
parameter range, exciton states may split out of the electron–hole pair continuum. With
such a method the optical absorption spectrum of PDA, in which exciton states have been
experimentally observed, is rather well reproduced [6]. However, electronic correlations are
still missing; a resulting failure can be found in the loss of size consistency when biexcited
states are introduced [7]. Recently Yuet al [3] combined the former theory [6] with a band
calculation using the projection technique of Becker and Fulde [8, 9] to include correlation
effects. They study the first excitations of polyparaphenylenevinylene (PPV) considered as
an effective linear chain. Good agreement is found with experimentally known energies of
the first singlet and triplet excitons as well as with the threshold of the conduction band.
Moreover, inclusion of biexcited states brings no size consistency problems in contrast to
the previous methods. However, with the procedure of renormalization of Yuet al, the two
particles of the hole–electron pair are independently renormalized. This procedure becomes
questionable when the two quasi-particles are constrained to stay close to each other as in
the exciton states of conjugated polymers. We will examine more precisely this point later.
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1.2. Molecular crystal approach

On the other hand, a more intuitive way is to consider the polymer chain as a one-
dimensional molecular crystal of monomers. This approach was first proposed by Simpson
[10], refined by many authors [11–13] and recently used by Rice and Garstein [14–16] on
polyparaphenylene (PPP) and PPV. Grounds can be found in the prevalent simple bond
character of the intermonomer bonding.π electrons are then preferentially confined on the
monomers according to their specific topology [17]. In these simple models photoexcitations
of the polymers are derived from the local excitations of the monomers and from charge
transfer excitations between monomers. Analytical results can then be obtained and a
good agreement is found with the absorption spectrum of PPP, after adjustment of the
parameter values [16]. The same authors considered also the PPV as a PPP with breaking
of the electron–hole symmetry; again, a good agreement is found for the linear absorption
[18]. However, the model of Rice and Gartstein (RG) is less microscopic than the one
described byHPPP . Moreover the field of application of the RG model is limited to the
study of optical absorption spectrum although Mukhopadhyay and co-workers have recently
employed a similar molecular exciton method in order to describe the spin–charge cross-over
in a dimerized chain [19].

1.3. Scope and plan

In this paper, we present a new method of calculation for the ground state and the first excited
states, lending a particular attention to the linear absorption. This new method aims to bridge
the gap between the traditional quantum chemistry or solid state physics methods based on
HPPP [2, 3] and the simpler molecular exciton methods [14]. Purposely, the electronic
configurations of the polymer are built on the basis of localized self-consistent orbitals of
the monomers. This specific choice of basis is a natural one for molecular exciton methods.
Then fromHPPP we build an effective Hamiltonian by selecting the particular subspaces of
electronic configurations relevant to the ground state and the primary excitations. With this
procedure, the excited states are eventually obtained with the same formal expression as in
the RG model. However, with our method, the empirical parameters of the RG model are
expressed in function of the ones ofHPPP and the physical understanding of the states is
ameliorated as we will see below. Also, our calculations save size consistency as do the ones
of [3] but remain much more simple. For simplicity we develop here this new method for
the simplest conjugated polymer,trans-PA in the neutral state; extensions to more complex
compounds as PPP and PPV are straightforward and will be presented elsewhere.

The outline of this paper is the following. In section 2 we introduce the self-consistent
orbitals of the monomer (ethylene) and the interaction terms corresponding to this special
choice of one-electron functions. We present then the configuration subspace which will
be used as model space for the ground state (section 3). An approximate diagonalization
into this subspace will be given in section 4. Finally we describe in section 5 the first
excited states of (+) electron–hole symmetry—relevant for the linear absorption—and we
will discuss our results.

2. Description of the polymer from the self-consistent orbitals of the monomers

In a first approximation conjugated polymers are quasi-one-dimensional compounds with
a carbon backbone characterized by several types of bond. For instance, an alternation of
the lengths of the different bonds, double and single, occurs in PA, the simplest conjugated
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polymer. The double bond (1.35̊A) is shorter than the single one (1.45̊A) and, due to
the linear dependence of the hopping terms,|βd | > |βs |. Because of this general feature,
and in the spirit of the molecular exciton methods, we choose the self-consistent orbitals
of the monomers as one-electron basis functions. This choice of representation for the
polymer is the first step towards an approximate description of the ground state and of the
first excited states. The critical parameter which controls the relevance of this particular
representation is the bond alternation parameterz = a/ξ wherea is the projection of the
average C–C spacing onto the chain axis andξ is the electronic coherence length defined
as ξ = (t0/2αu)a. Whenz = 0 (ξ → ∞), the chain would not be dimerized, with equal
lengths for every bond. This case is more inappropriate to be dealt with by our model.
Beneficially, the larger the order alternation parameter is, the more our particular basis will
constitute a good starting point for the study of theπ electronic properties. Whenz = 1
(ξ = a) the chain is totally dimerized, no electron transfer occurs from one monomer to
another and our special choice is the best one.

For ethylene simple symmetry considerations give the expressions of the self-consistent
orbitals. We associate with these two orbitals the following creation (destruction) operators
for the ethylenen

• B+nσ = (1/
√

2)(a+2nσ + a+(2n+1)σ ) (Bnσ = (1/
√

2)(a2nσ + a(2n+1)σ )) associated with the
bonding orbital;
• A+nσ = (1/

√
2)(a+2nσ − a+(2n+1)σ ) (Anσ = (1/

√
2)(a2nσ − a(2n+1)σ )) associated with the

antibonding orbital.

A polyene withN double bonds is then represented byN two-level systems (figure 1).

Figure 1. Representation of a polyene byN two-level systems.

On this basis, the energy terms ofHPPP , can be reorganized into three different classes
(figure 2):

(i) The kinetic term which allows an electron or a hole to hop from a monomer to one
of its first neighbours. This term is given byβs multiplied by a constant which depends on
the topology of the system (and of the orbital symmetries). This constant is equal to 1/2
for polyacetylene.

(ii) The intramonomer Coulomb term(U−V )/2 which introduces electronic correlation
inside the monomer, by coupling the fundamental configuration of a monomer with the
doubly excited one.

(iii) The intermonomer Coulomb dipolar terms are of two types:

• First the transition dipole–transition dipole interaction terms between two monomers
distant by r monomer units. One effect of these terms is to allow the interaction of
intramonomer monoexcitations. The corresponding expression is

0(r) = − 1
2(V1,2r − 2V1,2r+1+ V1,2r+2). (4)
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(a)

(b)

(c)

(d)

Figure 2. PPP interactions expressed on the basis of monomer self-consistent orbitals.
(a) Hopping term. (b) Intramonomer Coulomb term. (c) Transition dipole–transition dipole
interaction term. (d) Transition dipole–permanent dipole interaction term.

• Second the transition dipole–permanent dipole interaction which is expressed by

T (r) = − 1
2(V1,2r+2+ V1,2r−2). (5)

These dipolar interaction terms decrease very rapidly withr and can be considered as
important only forr = 1.

In their model Hamiltonian, Rice and Garstein have introduced some semi-empirical
parameters which are not considered in the traditional mean-field theory [14–16]:

• the ‘correlation energy gap’URG which is the energy required in the limitβs → 0 to
dissociate a local monomer excitation into a well separated electron and hole;
• the dipole–dipole interactionVRG between local excitations on neighbouring

monomers.

With our formulation of the Pariser–Parr–Pople Hamiltonian, for the case of
polyacetylene these semi-empirical parameters acquire a more microscopic meaning. The
identification ofVRG with 0(1) is immediate but the interpretation of theURG term is less
direct and will be given in section 5.

3. Generative local electronic configurations—collective excitations

3.1. Generative local configurations

In our localized picture of polyacetylene, electronic configurations will appear as
combinations of local electronic configurations. To generate a tractable model, a subset of



3946 S Pleutin and J-L Fave

the Hilbert space has to be selected. A simple way to do it is to retain only some relevant
local electronic configurations. In this section, we will illustrate this selection procedure in
building the ground state subspace. For excited states it will be done in section 5.

The ground state traditionally adopted by the molecular excitonic method is [12, 19]

|0〉 =
N∏
n=1

B+n↑B
+
n↓|Vacuum〉 (6)

where|Vacuum〉 is the vacuum state, i.e. the state without anyπ electron. The energy of
this state will serve as reference in the following. The state|0〉 only includes one type of
local configuration (LC). We will name itF -LC and the corresponding creation operator is

F+n = B+n↑B+n↓. (7)

At this level of approximation, the monomers are considered as independent and each
monomer possesses twoπ electrons which are described in the mean-field approximation.
With this very simple picture the dynamics of theπ electrons would be poorly described.
In particular, the conjugation phenomenon proper to theπ systems is not reproduced and
the electronic correlations are not introduced inside each monomer. We then improve this
description by introducing two electronic local configurations able to interact directly with
the state|0〉 by one of the characteristic interaction terms described above.

(1) TheD-LC in which the monomern is doubly excited; this LC is associated with
the creation operator:

D+n = A+n↑A+n↓Bn↑Bn↓. (8)

This LC interacts with the state|0〉 by (U − V )/2 and introduces intramonomer electronic
correlation; the corresponding energy isED = 4βd .

(2) The T c−1 -LC in which one electron is transferred from monomern (or n + 1) to
monomern + 1 (or n); the transfers on the left and on the right are combined with a (−)
sign. This particular linear combination belongs to the class of electron–hole symmetry
denoted (−) which is the ground state symmetry class. This LC is associated with the
creation operator:

T c+n = 1
2(A

+
n+1↑Bn↑ + A+n+1↓Bn↓ − A+n↑Bn+1↑ − A+n↓Bn+1↓). (9)

This LC directly interacts with the state|0〉 through βs and introduces short-range
intermonomer charge fluctuations. This effect is intended to correct the too strong
localization of the electrons on the double bonds associated with|0〉; the energy of this
LC is E(1) = 2βd + V + A(1) whereA(r) is the attractive interaction between the hole
and the electron at a distancer

A(r) = − 1
4(V1,2r + 2V1,2r+1+ V1,2r+2) (r > 0). (10)

These two kinds of local excited configuration bring about a local improvement of theπ

electron dynamics. Therefore in order to improve the dynamics of the wholeπ electronic
system, it is necessary to consider electronic configurations containing a number ofT c−1 -LCs
and D-LCs, able to introduce simultaneously intermonomer electron delocalization and
intramonomer Coulomb correlation in any location of the chain. Indeed, we have to build
electronic configurations by combining the three LCsF -LC, D-LC andT c−1 -LC, which, in
this sense, will be called generative local configurations (GLCs).

A given electronic configuration involvesnt T c
−
1 -LCs located on sites labelled{x(i)}

(i = 1, . . . , nt ) and nD D-LCs located on sites labelled{y(j)} (j = 1, . . . , nD); the
remaining monomers are represented byF -LC

|x(1), . . . , x(nt ); y(1), . . . , y(nD)〉 = T c+x(1) . . . T c+x(nt )D+y(1) . . . D+y(nD)|0〉. (11)
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More precisely, aT c−1 -LC configuration extends on two next-neighbour sites; the labelx(i)

is defined for the left site. In (11) spatial overlaps between GLCs are forbidden, so that
x(i) 6= x(j), x(j)± 1∀(i, j) andy(j) 6= x(i), x(i)+ 1∀(i, j).

The energy of these electronic configurations is given by the following expression:

E({x(i); y(j)}) = ntE(1)+ nDED +W({x(i)}). (12)

Because of the long-range part of the Coulomb potential, the energy of an electronic
configuration depends on the relative positions of thent T c

−
1 -LCs through the term

W({x(i)}). This dependence is in fact very smooth so that in practice we will neglect
it. We can write

E({x(i); y(j)}) ≈ E(nt , nD) = ntE(1)+ nDED. (13)

3.2. Collective excitations

From the electronic configurations (11), we build collective excitations which are
characterized by{nt , nD}, respectively the numbers ofT c−1 -LCs andD-LCs. nt and nD
are not really independent of each other; indeed, once thent T c

−
1 -LCs have been localized

on the chain (nt = 0, . . . , N/2), it is obviously not possible to place aD-LC on the sites
labelled{x(i)} or {x(i)+1}. ConsequentlynD = 0, . . . , (N−2nt ). For the thermodynamic
limit the relevant collective excitations are

|{nD, nt }〉 = 1√
N(nD, nt )

∑
{
x(1),...,x(nt )
y(1),...,y(nD)

} |x(1), . . . , x(nt ); y(1), . . . , y(nD)〉 (14)

whereN(nD, nt ) is the number of electronic configurations withnt T c
−
1 -LCs located on

sites{yt } andnD D-LCs on sites{xD}. In these expressions the summation is over the whole
electronic configurations that it is possible to perform. This summation is symbolized by
{ }.

In the expression (14) the determination of the normalization constant is purely a
problem of enumeration. First let us placent T c

−
1 -LCs on theN double bonds of the

polymer. EveryT c−1 -LC occupies two neighbour monomer sites, on both sides of a single
bond. The problem is equivalent to placingnt T c

−
1 -LCs on (N − 1) single bonds but with

the additional constraint of avoiding their overlap. So, it is necessary to introduce between
two T c−1 -LCs a forbidden zone which extents at least over one single bond. With this
topological constraintnt independent LCs have to be placed on an effective chain ofÑ

effective sites. Ñ is equal to the number of single bonds (N − 1) minus the number of
forbidden bonds (nt − 1); soÑ = N − nt and the configuration number fornt T c

−
1 -LCs is

N (nt T c1-LCs) = CÑnt = CN−ntnt
. (15)

Note that this enumeration can be also obtained by recursion.
It is simpler to introduce the on-siteD-LCs. The problem is to place independentlynD

D-LCs (nD = 0, . . . , N − 2nt )) on the remaining (N − 2nt ) monomers. This is a classical
result

N (nDD; (N − 2nt )) = CN−2nt
nD

. (16)

Following (15) and (16) we finally complete the description of the collective excitation

N(nD, nt ) = CN−ntnt
CN−2nt
nD

. (17)



3948 S Pleutin and J-L Fave

4. Approximate ground state

Generally speaking, determining the exact ground state ofHPPP is a very difficult task
which can only be performed numerically for finite compounds with less than six double
bonds. In the polymer limit, various more or less drastic approximations have been proposed
such as the simplified ground state of the molecular exciton methods (6) [12, 13, 19], the
traditional mean-field ground state [6] or the sophisticated Gützwiller variational solution
of the Peierls–Hubbard Hamiltonian [20]. In this section an approximate ground state is
built by diagonalizingHPPP in the Hilbert subspace spanned by the collective excitations
|{nD, nt }〉. We believe that this approximation grasps the essential features of the ground
state in order to describe the linear spectroscopic properties of conjugated polymers.

The collective excitations expressed by (14) and (17) interact with each other through
two distinct interaction terms:

It (nt ; nD) = 〈{nD, nt + 1}|HPPP |{nD, nt }〉 (18a)

ID(nD; nt ) = 〈{nD + 1, nt }|HPPP |{nD, nt }〉 (18b)

the intermonomer delocalization interaction term and the intramonomer correlation
interaction term respectively. The dipolar terms which have been described above are
small enough to be neglected in this approximate treatment of the ground state.

4.1. Intramonomer electronic correlation

First we consider the configuration subspaces which are spanned by the collective excitations
|{nD, nt }〉, such asnD varying from 0 to(N − 2nt ); each subspace is characterized by a
specific value ofnt . Only the second interaction term acts inside a given subspace:

ID(nD; nt ) =
√
(nD + 1)(N − 2nt − nD)U − V

2
(19)

where nD = 0, . . . , (N − 2nt ), that allows an easy diagonalization ofHPPP in these
subspaces. Indeed, from a particular electronic configuration withnt localizedT c−1 -LCs
|x(1), . . . , x(nt )〉, we can independently introduce intramonomer electronic correlation on
each of the(N −2nt ) remaining double bonds [21]. We then obtain for each monomer two
states|−〉 and |+〉 associated with the energiesε− andε+ respectively

ε± = 2βd ± 1
2

√
16β2

d + (U − V )2. (20)

If the state|0n〉 in which the particular monomern is in its own ground state is introduced,
the states|−〉 and |+〉 are written as{
|−〉 = a|0n〉 + bD+n |0n〉
|+〉 = aD+n |0n〉 − b|0n〉

wherea = (U − V )√
4ε2− + (U − V )2

andb =
√

1− a2. (21)

From the electronic configuration|x(1), . . . , x(nt )〉, we obtain a wavefunction incorporating
intramonomer electronic correlation,|x(1), . . . , x(nt )〉c by associating with each monomer
not implied in aT c−1 -LC a state such as|−〉:

|x(1), . . . , x(nt )〉c =
N−2nt∑
j=0

∑
{y(1),...,y(j)}

y(i)6=x(1),...,x(nt )

aN−2nt−j bjD+y(1) . . . D
+
y(j)|x(1), . . . , x(nt )〉. (22)

It is straightforward to verify that these states are eigenvectors ofHPPP in the subspace
spanned by the collective excitations|{nD, nt }〉 with a fixed numbernt .
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4.2. Intermonomer electronic delocalization

From these|x(1), . . . , x(nt )〉c we build new collective excitations including intramonomer
electronic correlation, denoted|nt 〉c, for nt T c

−
1 -LCs:

|nt 〉c = (CN−ntnt
)−1/2

∑
{x(1),...,x(nt )}

|x(1), . . . , x(nt )〉c =
N−2nt∑
j=0

aN−2nt−j bj
√
C
N−2nt
j |{j, nt }〉.

(23)

The energies associated with these collective excitations from|0〉c are given by

Ec(nt ) = nt (E(1)− 2ε−) = nt (E(1)− 2εc). (24)

These collective excitations interact through the following terms

I ct (nt ) = c〈nt + 1|HPPP |nt 〉c =
[
(nt + 1)

(N − 2nt )(N − 2nt − 1)

N − nt

]1/2

a2βs. (25)

Because of the topological constraint typical of theT c−1 -LCs, the mathematical problem
which is governed by the interaction term (25) and the energy term (24) is not analytically
solvable, in contrast to the problem of the intramonomer electronic correlation. To simplify
further we perform an additional approximation in which the interaction termI ct is replaced
by a simplest one analogous to (19)

J ct (nt ) = [(nt + 1)((N − 1)/3− nt )]1/2
√

3a2βs. (26)

This interaction termJ ct constitutes an excellent approximationI ct for the low values of
nt (figure 3). In the following we will check that the collective excitations|nt 〉c with nt
greater than approximatelyN/4 are not relevant for the description of the ground state, so
that the approximation holds even in an unfavourable case.

Figure 3. Variation of the interaction term between the collective excitation|nt 〉c and |nt + 1〉c
versus the number of charge-transfer excitationsnt for anN = 200 polyene.I ct exact term (25);
J ct approximated term (26).

With the interaction termJ ct the problem of intermonomer delocalization becomes
formally similar to the one of intramonomer electronic correlations. For the latter, we have
seen that the system behaves asN coupled independent two-level systems, the coupling
being (U − V )/2. Here, the problem is reduced to(N − 1)/3 effective independent two-
level systems|a〉 and |b〉. These states have the energiesEa = 0 andEb = E(1) − 2εc
and are coupled by the effective interaction

√
3a2βs . For the polymer ground state we have
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only to consider the lowest eigenstate in energy, denoted|−〉t . This state can be easily
expressed:

|−〉t = at |a〉 + bt |b〉 (27)

which is associated with the energy

εt = E1− 2εc
2

− 1

2

√
(E1− 2εc)2+ 12a4β2

s (28)

where

at =
√

3a2βs√
ε2
t + 12a4β2

s

and bt =
√

1− a2
t . (29)

For convenience let us definẽNt = E((N − 1)/3) whereE takes the integer part. With
the help of (27) we finally obtain an approximate description of the ground state:

|GS〉 =
Ñt∑
nt=0

a
Ñt−nt
t b

nt
t

√
C
Ñt
nt |nt 〉c (30)

associated with the energy

EGS = Nεc + N − 1

3
εt . (31)

In order to measure the quality of our analytical approximation, we have performed a
numerical calculation with the ‘exact’ interaction term (25). In figure 4, we have reproduced
the square of the coefficients of the ground state wave function on the basis of the collective
excitations|nt 〉c calculated forz = 0 and in neglecting the Coulomb terms for a long polyene.
This parameter value corresponds to the most unfavourable choice to test our method. We
can see that for the ground state wave function the Gaussian approximation is indeed very
good. Moreover, only the collective excitations|nt 〉c with a low nt appear to be important.
The corresponding energy too agrees very well (to 1%).

Figure 4. Weight of the collective excitations|nt 〉c in the ground state of a chain of 168
monomers (without alternation or electron–electron interaction). Open circles: numerical result.
Solid circles: Gaussian approximation.
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4.3. Comparison with the exact result of the SSH Hamiltonian

The Pariser–Parr–Pople Hamiltonian admits analytical solutions if we neglect the electron–
electron interaction term, to obtain the so-called Su–Schrieffer–Heeger Hamiltonian [5]. In
the following we compare our approximate result with the exact analytical result which is
obtained in the framework of the SSH Hamiltonian, versus the bond alternation parameter.
In figure 5 we have represented the ratio1(z) = EGS(z)/ESSH (z) in whichESSH (z) is the
exact analytical result of the ground state energy.

(i) For z = 1, our result becomes exact. This is not surprising since in this limiting
case the monomers are totally independent.

(ii) For z = 0, we obtain almost 92% of the exact result; this good agreement constitutes
a surprise since our model seems rather unsuitable in this limit. Indeed this interesting result
shows that the most important charge fluctuations are on the range of the intramonomer and
of the nearest-neighbour fluctuations, even in the unrealistic case of a conjugated polymer
in which all bonds would have the same length.

It is possible to refine further this crude description by considering additional GLCs;
figure 5 shows also the improvement when all the GLCs implying two neighbour sites are
taken into account.

Figure 5. Ratio of the ground state energy (31) to the exact analytical SSH solution versus
the bond alternation parameterz. Solid circles: using three GLCs (F -LC, D-LC andT c−1 -LC).
Open circles: using in addition all the GLCs implying next neighbours.

For polyacetylene, in which the generally admitted parameter values givez ≈ 0.15
[1, 5], the agreement reaches about 97%. On the other hand, it is possible to describe other
compounds as effective linear chains with a more pronounced bond length alternation [3].
For example polyparaphenylene can be crudely associated withz ≈ 0.3. In such a case
the agreement is excellent: we obtain about 99%. By looking at these good results, we
guess that our approximation, crude as it seems with only three GLCs (F -LC, D-LC and
T c−1 -LC), keeps the essential features of the ground state.

An evident flaw of our approximation at this level is the neglect of long-range
intermonomer charge fluctuation. ‘Long’ means here over the next-neighbour monomer.
In the SSH model, all the charge transfer LCs (at any distance) are degenerate. Note that,
in contrast, when electron–hole Coulomb interaction is taken into account, the energies of
the short-range LCs are decreased and our approximation will become better.
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4.4. Finite-size effect

The approximate intermonomer delocalization energy (IDE) for the polymer fails for the
smallest polyenes. For instance forN = 2 we obtain with this expression only 80% of the
exact result. However, this expression can be easily improved. Indeed, forN = 2 the IDE
is obviously given by

ε2 = E1− 2εc
2

− 1

2

√
(E1− 2εc)2+ 4a4β2

s (32)

and not byεt/3. We can then rewrite the IDE for a polyene withN double bonds including
this correction:

Edeloc(N) = ε2+ (N − 2)

3
εt . (33)

With this new expression the IDE of any oligomer is well reproduced with an error always
lower than 2%. This improvement of the delocalization energy will become particularly
important in the following.

5. First excited states of (+) electron–hole symmetry—exciton states

In this paper we only will consider now the lowest excited states of (+) electron–hole
symmetry. They are the relevant states in order to study the threshold of the linear
absorption. We have generated above a subspace relevant for the ground state and containing
only |{nD, nt }〉 electronic configurations. For the excited states, we select another model
subspace based on electronic configurations which differ from|{nD, nt }〉 only by localized
perturbative areas. So, in our formalism, the excited states are composed of two different
parts:

(i) A local zone—called the core of the excitation—which is a local perturbation of the
ground state system. The description of this local excitation requires new GLCs of (+)
electron–hole symmetry. We will examine them below.

(ii) Outside the core of the excitation, the dynamics of theπ electrons remains described
by F -, D- andT c−1 -LCs as in the ground state.

Let us first introduce the new GLCs on which is based the description of the cores
of the excitations. For the states of interest here, these GLCs are monoexcitations of (+)
electron–hole symmetry which are expressed by the following creation operator:

T c+n (r) = 1
2(A

+
n+r↑Bn↑A

+
n+r↓Bn↓ + A+n↑Bn+r↑ + A+n↓Bn+r↓). (34)

This operator creates a local mono-excitation in which a hole and an electron arer monomers
apart. These GLCs will be denotedT c+r -LCs. Their energies depend onr:

E(0) = 2βd + U − V
2

(35)

E(r > 0) = 2βd + V + A(r). (36)
The model subspace for excited states is spanned by the complete set of electronic

configurations with one charge transfer excitation of (+) symmetry located on sitest (n)
and t (n + r), nt T c−r -LCs located on sites labelled{x(i)} (i = 1, . . . , nt ) andnD D-LCs
located on sites labelled{y(j)} (j = 1, . . . , nD). Of course the same constraints as seen
for the ground state have to be considered, i.e. no spatial overlap of the different LCs can
occur. A general expression is then

|t (n), t (n+ r); x(1), . . . , x(nt ); y(1), . . . , y(nD)〉
= T c+n (r)T c+x(1) . . . T c+x(nt )D+y(1) . . . D+y(nD)|0〉. (37)
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The diagonalization into this model subspace follows the previous approximate treatment
performed for the ground state.

The excitations (37) interact viaHPPP . As for the ground state we begin by introducing
intramonomer electronic correlations: we associate a state|−〉 (21) with everyF -LC of
|t (n), t (n+ r); x(1), . . . , x(nt )〉, to obtain

|t (n), t (n+ r); x(1), . . . , x(nt )〉c =
N−2nt−2∑
j=0

∑
{y(1),...,y(j)}

y(i)6=t (n),t (n+r),x(1),...,x(nt )

aN−2nt−2−j bjD+y(1) . . .

. . . D+y(j)|t (n), t (n+ r); x(1), . . . , x(nt )〉. (38)

It is important to notice that, because of the presence of the charge transfer excitation, the
number ofF -LCs is in this case onlyN − 2nt − 2 (or N − 2nt − 1 if the excitation is
concentrated onto only one monomer,r = 0). Indeed it is not possible to introduceD-LCs
in the monomer sites occupied by this perturbation. Consequently, this results in a loss of
ground state intramonomer correlation energy which then increases the excitation energy
[9].

The collective excitations (38) interact via the transfer integral in a similar way to the
collective excitations (23) relevant for the ground state. However the problem is here more
complex. Indeed the presence of aT c+r -LC divides the chain into three different sections:

• the part on the left of theT c+r -LC which containsNL monomers,
• the part on the right of theT c+r -LC which containsNR monomers,
• the part inside theT c+r -LC which containsNI monomers located betweent (n) and

t (n+ r).
We have seen before that the expression (33) is valid (with a very good agreement) for

any chain size. The three parts of the chain can be independently solved in the same way
than the ground state. So we obtain for the three parts

−EL/Rdeloc = ε2+ (NL/R − 2)

3
εt (39)

−EIdeloc(NI ) = ε2+ (NI − 2)

3
εt if NI > 1

= 0 otherwise. (40)

The total intermonomer delocalization energy is the sum of these three different parts; this
is a function ofr, the distance between the hole and the electron of the excitationT c+r -LC.

Edeloc(r) = (2+2(r − 3))ε2+ N − 6−2(r − 2)−2(r − 3)

3
εt (41)

where2(x) is the Heavyside function which is equal to zero forx below zero and one for
x above zero. In every case there is a loss of IDE in the excited states with respect to the
ground state.

The corresponding wave function is given by

|t (n); t (n+ r)〉dc =
Ñr∑
nt=0

aÑr−nt bnt |t (n); t (n+ r); {nt }〉c (42)

whereÑr = E((NL +NR +NI − 3)/3) and |t (n); t (n+ r); {nt }〉c are collective excitations
analogous to (23) but with local excitation onn and n + r. In this expression, every of
the three different parts introduced by the ‘defect’T c+r -LC is independently described by a
state such as (30). However this approximation found for the ground state is relevant for the



3954 S Pleutin and J-L Fave

limiting caseN → ∞. Consequently, the parts outside theT c+r -LC are well described in
(42). In contrast, the description of the part inside theT c+r -LC could become inappropriate
when the charge transfer extends only over a few monomer units; we have neglected these
finite-size effects. Moreover, in practice we have neglected too the renormalization of the
interaction terms due to the effects of intermonomer delocalization. Taking into account
these effects is straightforward without significant change in the results.

5.1. Dressing of the excitations

Yu and co-workers dressed the particles by a polarization cloud following the projection
technique [3, 9]. In this work, we dress eachT c+r -LC using a perturbative treatment. In
order to perform this, for a givenT c+r -LC we consider the local configurations|I 〉 called
corrective local configurations (CLCs), with excitation energyEI , which interact directly
with it through tI . The effect of|I 〉 on the energy of the excitation is then accounted for
by a simple second-order perturbation expansion which depends onr

εP (r) =
∑
I

t2I

E(r)− EI . (43)

The relevant CLCs give two distinct contributions to the polarization cloud:

(i) the first kind of contribution is the dipolar one which is due to the long-range part
of the Coulomb term;

(ii) the second kind of contribution introduces additional kinetic terms through the
transfer integral.

The energy of a local excited configuration, including intramonomer electronic
correlations and intermonomer electronic delocalizations, is then given by the following
sum

ĒDc(r) = E(r)+ (N − 1−2(r − 2))εc + Edeloc(r)+ εp(r). (44)

This energy can be expressed with respect to the ground state energy

ε(r) = ĒDc(r)− EGS = E(r)− (1+2(r − 1))εc + (1+2(r − 3))ε2

−(3+2(r − 1)+2(t − 2))εt/3+ εp(r). (45)

In this expression three different competing terms contribute to decrease or increase the
excitation energy compared to the crude energyE(r). There is a loss of ICE and IDE and
a gain of polarization energy.

5.2. Renormalization of the interaction terms

The effective interaction terms betweenT c+r -LCs are also easily introduced by the quasi-
degenerate second-order perturbation theory. Indeed, let us denote by|1〉 and |2〉 two
T c+r -LCs of energiesE′ and E′′ respectively. These twoT c+r -LCs interact with some
identical CLC |I 〉 through interaction terms denotedt1I and t2I . In these conditions an
effective interaction exists between|1〉 and|2〉, which is expressed by the following simple
expression

t
eff

12 =
1

2

∑
I

t1I t2I

{
1

E′ − EI +
1

E′′ − EI

}
. (46)

This correction modifies the crude interaction term between the two LCs|1〉 and |2〉.
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5.3. Diagonalization

Once the energy terms (45) and the interaction terms have been determined, we obtain
the analogue of the Rice–Gartstein model for PA but with parameters directly expressible
from HPPP . We have seen above the simple expression ofVRG. We can now express the
‘correlation energy gap’ with the help of theHPPP parameters:

URG = lim
βs→0

(ε(∞)− ε(0)) = V + εp(∞)− εp(0) = V − 2T (1)2

(U − V ) . (47)

The excitation spectrum is then easy to calculate. Because the system is translationally
invariant we build first, from the local excitations (42), the collective excitations
characterized by the wavenumbersk:

|k, r〉 =
√

2

N − r + 1

∑
n

sin
kπn

N − r + 1
|t (n); t (n+ r)〉dc. (48)

The second step consists in diagonalizing the following tridiagonal matrix

〈k, r|HPPP |k′, r ′〉 = δkk′ {δrr ′ε(r)+ δr ′,r±1Ir,r±1(k)} (49)

whereδ is the Kronecker index andIr,r±1(k) the interaction term between|k, r〉 and|k, r±1〉.
Because the interactions are local, only the collective excitations with the same wave

numberk may interact. Here we have to consider only thek = 0 subspace in which the
whole oscillator strength is concentrated.

5.4. Size consistency of our procedure

Excitonic calculations are usually performed at the SCF level via a configuration interaction
(CI) in the subspace of monoexcitations [6]. It is well known that size consistency of such
a procedure is not insured and these methods fail for instance when biexcited configurations
are considered [7]. This is the case for the study of 2Ag states of some conjugated polymers
[1, 2]. The reason is indeed that it is impossible to treat the ground state and the excited states
on an equal footing: doubly excited configurations introduce some electronic correlation into
the ground state; in contrast, the excited states (1Bu, 2Ag) stay at an uncorrelated level.
Consequently, the excitation energies diverge when the system size increases. This is the
case for any incomplete CI procedure not restricted to monoexcited determinants.

In our procedure, the electronic system is described at a local scale. The total energy
is an extensive quantity and the only differences between the ground state and the excited
configurations (equations (30) and (42)) are localized on the core of the excitation. The other
part of (42) is treated exactly in the same way as for the ground state. Consequently, our
procedure, as is the one of [3], is size consistent. The introduction of higher excitation
processes becomes straightforward: it would suffice to consider some other GLCs for
building the corresponding core excitations.

5.5. Comparison with the results of Yu et al

In order to describe the first excited states of the PPV, Yuet al have considered an effective
Pariser–Parr–Pople Hamiltonian [3]. Assuming that the benzene rings just affect the electron
transfer between double bonds, they have considered PPV as a PA with a slightly more
pronounced dimerization; they tookz = 0.19. They performed a calculation of the excitation
spectrum in two different steps:
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• first, they determined the band structure, taking into account the effect of the electronic
correlations by applying the projection technique of Becker and Fulde [8, 9];
• second, using the correlated band structure they performed an excitonic calculation

following Abe et al [6].

With z = 0.19, U = 3t0, V = t0 and t0 = 2 eV, the lowest singlet exciton of (+)
electron–hole symmetry appears atEexc = 2.42 eV and the edge of the conduction band
appears atEgap = 3.58 eV. These calculated values agree well with the experimental ones.
With our method the calculation of the excitation spectrum for the same parameters gives
Eexc = 3.30 eV andEgap = 3.55 eV. The agreement for the band gap is excellent, in
contrast to the exciton energy value, and this pinpoints a fundamental difference between
the two models. We have to note before going further that the value ofEexc is calculated
on a finite polyene withN = 75 double bonds. However the convergence of the calculation
with the system size is fast and the finite size does not affect noticeably the final results.
The discrepancy between the two calculations can rather be attributed to the renormalization
procedures which are radically different. In the method of Yuet al the hole and the electron
are renormalized by the projection technique independently of each other [9]. Therefore the
hole and electron polarization clouds are invariant with respect to the separation distancer

between them. The energiesε(r) of the charge transfer excitation vary only by the effect
of the attractive term between the hole and the electron (ε(r) < ε(r ′) if r < r ′). This
approximation is justified whenever the description in term of bands is sufficient; then
electron and hole are far apart on average. In the excitonic states, they are constrained to
stay close to each other and, moreover, it is known that the exciton radius is rather small
in conjugated polymers. In this extreme case the polarization clouds of the two quasi-
particles may interact notably and the approximation of Yuet al becomes questionable.
In our method we adopt a completely different procedure. Indeed we have renormalized
the local excitationT c+r -LC in which a hole and an electron are separated byr monomer
units. Then the hole and the electron are renormalized together and the correctionεp(r)

depends on the distancer between them. When the excitation is a band to band excitation,
the two procedures are equivalent because we can consider that the two quasi-particles are
(generally) far from each other. So we obtain approximately the same value forEgap. In
contrast, for an excitonic state, the two procedures are different and so give different values
for Eexc. Yu et al must have overestimated the gain of polarization energy. Indeed, when
the two particles are very close, we can roughly guess that in the intermediate zone the
polarization gain is counted twice.

In view to confirm these conclusions, it is easy to adapt our formalism to the hypothesis
of Yu et al. In this case we write the excitation energy of a charge transfer excitation of
radiusr, εy(r), as

εy(r > 0) = ε(∞)+ A(r) (50)

εy(0) = ε(∞)+ U − 3V

2
+ εc (51)

where ε(∞) is calculated following the expression (45). We have yet to neglect any
difference between the interaction terms in the matrix (49) and to takeIr,r±1(k) = I∞(k),
the interaction term between charge transfers of infinite radius. With these new values, we
obtainEg = 3.55 eV andEu = 2.47 eV. This excellent agreement completely confirms the
origin we have assigned to the discrepancy.
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5.6. Exciton versus conduction band absorption

Let us finally introduce the interaction of an electric fieldE(r, t) with theπ electrons via
the dipolar approximation

Hint = er ·E(r, t) (52)

wheree is the electron charge. This approximation is justified as long as the wavelengthλ

of the electric field is greater than the characteristic lengtha; this is effectively the case in
the visible range.

The states of different electron–hole symmetry are coupled throughHint . The linear
absorption spectrum at low energy is entirely determined by the monoexcited states that
we have presented in this section. In figure 6 we have represented the component along
the molecular axis of the calculated oscillator strength forz = 0.19, U = 3t0, V = t0
and t0 = 2 eV. As observed experimentally for PDA, the major part of the oscillator
strength is concentrated in the excitonic peak. In counterpart, the electron–hole continuum
becomes quasi-invisible. Results with other parameters show that the larger the binding
energy of the exciton is, the smaller the range of the prominent charge transfer states and
the higher the intensity of the associated transition will be. Similar results have been found
very recently but in a strong-correlation approximation not really appropriate for conjugated
polymers [22].

Figure 6. Component of the linear absorption along the molecular axis, in arbitrary units.
The exciton peak and the threshold of the conduction band have been calculated forz = 0.19,
t0 = 2 eV,U = 3t0, V = t0.

6. Conclusion

Intramonomer transfer integrals are larger than intermonomer ones in conjugated polymers.
In this work, we have taken intentional advantage of this characteristic feature of conjugated
polymers to build the electronic configurations of the polymer from the monomer orbitals.
We have then diagonalized the Pariser–Parr–Pople Hamiltonian on a reduced Hilbert space.
By doing this, from the PPP Hamiltonian, we obtain for the excited state calculations a
simple effective molecular exciton method.

With the adopted local description, each polymer electronic configuration is a distinct
combination of several local electronic configurations. For the ground state, we have decided
to retain only three kinds of local configuration, the so-called generative local configurations:
F -, D- andT c−1 -LCs. The first GLC represents a monomer in its ground state; the second
and the third ones introduce intramonomer correlation and intermonomer delocalization,
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respectively. These three GLCs permit us to build a configuration subspace, on which we
give an approximate analytical solution ofHPPP . This solution is in good agreement with
the exact result of the mean-field approximation of the Su–Schrieffer–Heeger Hamiltonian.

Excited states of low energy are then dealt with as local perturbations of the ground
state so obtained. The composition of the perturbative zone (the core of the excitation)
depends on the nature of the considered excitation. In this paper we only consider the
lowest excitation of (+) electron–hole symmetry generated by theT c+r -LCs, in which one
electron is transferred from a monomern to the monomer (n + r). Furthermore, these
T c+r -LCs are dressed by a perturbative treatment. The resulting excited state energies
are determined by the losses of correlation and delocalization with respect to the ground
state, as well as by electron–hole attraction and the counteracting polarization energy. The
results obtained in this manner possess the characteristics expected for conjugated polymers:
the first excitations are excitons of short radius and the oscillator strength is essentially
concentrated into these excitonic transitions. Our calculations moreover show the necessity
of properly considering the interaction between the two quasi-particles which constitute the
exciton, especially when its radius is small.

For simplicity, this approach has been applied here to the neutraltrans-polyacetylene.
By reason of their topology, other compounds need a more complex description of monomers
and a larger number of GLCs. The polymer excited states will stem from the various possible
excitations of a monomer. The corresponding collective excitations depend then on their
mutual coupling, particularly on the relevant charge transfer integrals, of which some can
be vanishing small. Several distinct excitonic states are then possible, besides excitations
remaining mainly localized on monomers.
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